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I. Abstract  

 In this paper, a modular Drive-by-Wire system is developed and applied to an 

experimental test platform which emulates a physical vehicle. We aim to address the lack of open 

source, low cost, and vehicle-agnostic autonomy conversion kits. The proposed solution 

surpasses previous methods due to its matured safety systems, intuitive user interface, and ease 

of implementation. Through custom actuation of a target vehicle’s steering, braking, and 

acceleration, we provide an intermediary between autonomous control algorithms and the 

vehicle, facilitating safe development and testing. Experimental results prove that this solution 

satisfies the mechanical and software criteria set by autonomous control researchers. The system 

is promising for use by control departments to begin rigorous testing of algorithms on a wide 

variety of vehicles. 

 II. Introduction 

University researchers approaching autonomous driving algorithms lack centralized 

platforms to apply their research. Their current options include scaled models, simulation, and 

expensive closed-source solutions from private corporations. This project aims to develop a 

modular Drive-by-Wire (DBW) system to enable autonomous control of utility vehicles similar 

to the Polaris Gem e2 for UCSC’s Hybrid Systems Laboratory (HSL), which will serve as a 

platform for research on sensing, control, and networking in autonomous vehicles. The project’s 

short-term goal is to enable gamepad control of the vehicle, and the long-term goal is to prepare 

the platform for safe and autonomous navigation within the UC Santa Cruz extended campus 

through autonomous algorithms. The vehicle will be utilized as a testbed to develop practical on- 

and off-campus applications, such as autonomous delivery and transportation. As autonomous 

vehicle research is a new advent to the UCSC campus, campus safety administrators have 
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provided strict design constraints on the Drive-by-Wire system. Within nominal operation, the 

system will need to enable digital control of the vehicle’s steering, braking, and acceleration, 

while also maintaining the original functionality of the manual driving controls. The system 

needs to quickly and safely shut off if a problem occurs, and needs to allow for safe and succinct 

manual override.  These unique yet universally desired requirements differentiate our 

implementation from other solutions. 

Projects similar to this one have been completed before, although most involve the 

complete removal of the vehicle’s steering column [1] which goes against the client’s 

specifications of allowing the vehicle to be manually operated by a driver. Additionally, 

companies such as Nexteer approach software control through “steer-by-wire”, which involves 

mechanical detaching the steering wheel from the steering mechanisms, thereby introducing the 

potential for software communication failures. One competitor, Dataspeed, offers commercially 

available products that allow for DBW control of similar vehicles, but these products are 

cost-prohibitive and closed-source [2]. It is for these reasons that HSL discarded these solutions 

as options for their vehicle, as they did not align with their research goals or the university safety 

requirements. Since our team offered HSL a solution that is low-budget, well documented, open 

source, and can be easily modified in the future, our collaboration quickly became the logical 

option for them. 

Although this vehicle is meant to be a platform for autonomous vehicle research, safety 

for both the passenger and pedestrians remains the highest priority. Guided by discussions with 

the Human-Robot Interaction Lab at UCSC [3], our team is responsible for ensuring the safe 

operation (see Section 5) of our DBW system as well as providing redundant Emergency-Stops 

(E-Stops) for any potential users of the system. Finally, this includes an intuitive user interface to 
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facilitate the balance between enforced safety by the DBW system, and the desire by the operator 

to test their autonomous algorithms.  

Since the intent of this DBW system is to be applied on a wide variety of vehicles, we 

sought to provide a proof of concept through an experimental setup that we call the “System on a 

Bench”. This will consist of our methods of interfacing with the steering, braking, and 

acceleration subsystems of the vehicle, as well as peripherals including the turn signals, horn, 

and headlights. It will also showcase the fully developed safety systems, emulating the control 

flow of using autonomous algorithms or the gamepad to drive the vehicle. Further, it enables the 

testing of autonomous driving algorithms through hardware-in-the-loop simulation. 

The remainder of this document discusses overall design approaches, implementation, 

and validation of the DBW system. Additionally, it will serve as a resource to guide research 

teams in the implementation of our DBW system on candidate vehicles. Section 3 presents the 

overall system level view of our project, discussing scope and limitations we faced as well as the 

concept of operations. Sections 4-10 provide further detail into the methods used, reviewing the 

implementation and operation of each subsystem and how they align with client requirements. 

Section 11 presents the next steps for completing the project, and lays the framework for future 

development of the system. 

III. System Level View 

Modular Drive-by-Wire Representation 

Our implementation of the Drive-by-Wire system differs from previous implementations 

due to its modular design. Since each subsystem is independent of each other, it is easy for future 

teams to build upon or revise our solutions for each subsystem. Furthermore, the modularity of 

our solution allows for the Drive-by-Wire system to be easily adapted to other vehicles, instead 
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of being custom tailored to only the Polaris GEM e2. The safety, user interface, autonomous 

controller interface, and underlying system will be the same when implementing our system on 

different vehicles. The added advantage of this approach is that duplicating the DBW system will 

lead to intuitive use, and all documentation can be consolidated (since multiple versions 

wouldn’t require new training on user interface). The difference in various vehicle 

implementations is with how the steering, braking, acceleration and peripherals are interfaced. 

With the future designs outlined in Next Steps (Section     ), each subsystem can be changed and 

modified at will, all the while retaining the same functionality. For further information on 

specific vehicle implementations, see Integration (Section      ). 
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Figure __: Flow Chart detailing the Concept of Operation. 

Concept of Operations: Figure __ guides a potential user of the Drive-by-Wire system through one of the use cases: testing and 

verification of control methods, and hardware in the loop simulation for the development of autonomous control algorithms. The user 

interaction with the system can be abstracted into five major areas: the Drive-by-Wire system is off, the system is performing startup 

checks, the system is being controlled through software (either with the gamepad or autonomous algorithm), the system has been 

temporarily bypassed and the vehicle is manually controlled, and the system has observed an error and prevents further operation. 
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System Functional Overview 

 

 
 Figure __: System on a Bench. (Top) Schematic top-down view. (Bottom) Photograph of the 

constructed system. 
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(1) Steering Subsystem – A 12V DC motor is geared directly to a standard ¼” steering column. 

A linear feedback potentiometer allows our system to command and control a precise steering 

angle. 

(2 & 3) Braking Subsystem – A 12V DC linear actuator is positioned adjacent to a spring-loaded 

brake pedal. When the actuator contracts, the brake pedal is coincidentally depressed. Two 

automotive pedal position sensors provide feedback for the pedal and the actuator independently, 

allowing our system to accurately control braking intensity as well as detect manual override by 

the user. 

(4) Acceleration Subsystem – A digital to analog converter allows our system to output a precise 

voltage in order to replicate the output of a standard accelerator pedal. A custom contention 

circuit allows our synthesized signal to take priority over the vehicle’s accelerator pedal when the 

Drive-by-Wire system is active. 

(5) Peripheral Interface – An array of relays allows our system’s microcontroller to control the 

vehicle’s horn, headlights, and turn signals independently. These relays are intended to be spliced 

into an existing vehicle signal harness. 

(6) Safety Systems – E-Stops located inside and outside the vehicle allows a user to quickly and 

safely shut off the Drive-by-Wire system in the case of an emergency. When an emergency stop 

event is detected, our system will bring the vehicle to a stop. 

(7) User Interface – A user is intended to interface with the Drive-by-Wire system either via an 

autonomous driving computer or via a gamepad controller. Our system’s mode select panel 

allows the user to easily switch between the methods of input as well as turn our system off. 

IV. User Interaction 

Mode Selector Panel 
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The mode selector panel serves as the primary form of user interface with the 

Drive-by-Wire system. Using the Mode Select Panel, a user can select between modes of vehicle 

control, read error messages and status updates, and shut off the DBW system. The panel uses 

three back lit buttons to indicate which control method is currently in use (i.e. the “OFF” button 

will be illuminated when the system is under manual control, and so on).  Also included in the 

panel is a buzzer used to indicate error states or emergency stops of the system (Figure __). 

 

Figure __: Mode select panel CAD Model (Front view). 

If the OFF button is pressed during software control of the by-wire system, incoming 

software commands will be rejected, and the vehicle will only be controlled manually. 

Additionally, if the user wants to switch from gamepad to autonomous control (or vice versa), 

they will have to press the off button, then press the desired button. This is to prevent the system 
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from accidentally switching to autonomous control due to accidental button presses. The display 

will report the current state of the vehicle (idle, startup, software-operation, manual-operation, or 

error), and will report what caused the system to enter an error state. There are also areas of the 

concept of operations in which the user may not know what the system is doing (particularly the 

startup tests), so the display allows the user to understand the underlying functionality without 

being required to understand the complete technical functionality of the system. Finally, a 12V 

buzzer is used to indicate to the user that an error has occurred. Even though this will be shown 

through the display, these annunciators of failure are vital for safe use of the system.  

The mode select panel includes integrated driver circuitry for all button LEDs and the 

buzzer so that they can be toggled using GPIO pins from the central controller. The schematic for 

this circuitry is shown below in Figure __.  
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Figure __: Mode Select Schematic. 

Gamepad Interface 

The first method of by-wire control is through an Xbox 360 game controller. In addition 

to serving as a method of complete vehicle control, the gamepad serves as validation for software 

control, as input on the gamepad is translated to reference commands for the actuators. Figure __ 

depicts the way in which the vehicle can be driven by the gamepad; the left joystick x-axis is 

used to control the steering angle, the left trigger controls what percent the brake actuator is 

being extended, and the right trigger controls what percent of maximum acceleration we are 

commanding the vehicle. Button Y, the directional pad, the right joystick, and the middle three 

buttons (back, guide, and start) are available for use by the implementer of the DBW system for 
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custom purposes. Since the joysticks and triggers are analog, they provide the user with great 

precision in vehicle control. This particular scheme (left trigger brake, right trigger throttle, and 

left joystick steering) mirrors several driving video games [  ], allowing for intuitive control. 

 

Figure __: Joystick button mapping for vehicle control. 

Autonomous Controller 

The second method of by-wire control is through the use of a higher-level controller, 

which uses a future sensor suite to autonomously control the vehicle. All autonomous controllers 

will send the same type of data to the DBW system, and will receive the same type of data from 

the DBW system. This will be covered in more depth in the following section, as well as the API 

calls that a developer can use to command our system. The tools that an autonomous software 

developer chooses to run on their autonomous controller is completely in their control; they can 

choose to use whatever visualization software they feel is best suited to their applications. 
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V. Central Controller 

Design Specification  

The cornerstone to the DBW system is a controller which facilitates the interaction 

between software control methods (either through the gamepad or autonomous controller) and 

the actuators controlling the mechanics of the vehicle. We have aptly named this the “central 

controller”, although considering its role in ensuring the safety of the passengers and pedestrians, 

“safety controller” was also a candidate name. This section will cover the requirements for 

candidate microcontrollers, the overarching software framework, and specific processes which 

need to be run for desired functionality.  

 

Microcontroller Selection 

The main characteristics to look for when choosing an automotive microcontroller are 

“hardware support for virtualization, quality of service settings, the ability to firewall 

peripherals, freedom from interference and secure compartmentalization of software functions 

while supporting concurrent multiple ASIL safety levels” [5]. The platform which best fits these 

standards is the STM SPC58EC-DISP automotive microcontroller. This board enables the use of 

a wide variety of communication protocols, including I2C, SPI, Ethernet, and CAN. Thus, we 

chose to use the SPC58EC-DISP as our central controller, since it fit both our immediate needs 

and future expectations from the Drive-by-Wire system. 

 

State Machine  
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Now that the concept of operations has been introduced, as well as the intended user 

interface, this section can focus on the software architecture that enables the intended behavior. 

This current section will focus more on the state machine functionality, covering specific 

software processes and threads which run within these states. This will encapsulate the entire 

abstraction stack from a high level input command to the underlying software processes that 

follow. The state machine is shown below in Figure __. The individual states will now be 

analyzed in greater detail. 

 

Figure __: State machine of the central controller. 

Idle State: When the vehicle is initially keyed on and placed into low voltage mode, the central 

controller will boot up and enter the idle state. While in this state, the DBW system will simply 

wait for software control to be initiated through the input mode channel (either the gamepad 

button or autonomous button is pressed). If the vehicle is in motion while the system is idle and 

one of these buttons is pressed, the button press will be rejected. This is because the setup state 

requires the vehicle to be idle.  
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Setup State: The setup state is where the DBW system checks that the system is safe and ready 

to use. Specific tests are run in this state and are listed as follows. 

1. Mode Selector E-Stop Test: The user is required to press the emergency stop button on 

the mode selector panel, verifying the mechanical and software connection. 

2. Brake Test: This test commands the braking linear actuator to 50% and 100% extension, 

and verifies that the resulting brake pedal angle proportion is 50% and 100%. 

3. Steering Test: This test uses the steering motor to command the steering column to ±5°, 

and using the steering column potentiometer, verifies that this angle is correct. See 

Section X (Next Steps) for future iterations. 

4. Accelerator Test: The accelerator of the Gem is commanded to the “off voltage” (1.08V) 

using a dedicated circuit (see section IX), so this test verifies the connection by reading 

the actual output with the central controller’s ADC. 

5. Joystick Controller Ping Test: The central controller sends a specific message to the 

joystick USB host controller and awaits a predefined response. If the response is not 

received within a time frame, an error flag is raised. 

6. Autonomous Controller Ping Test: Similar to the joystick controller’s test, the central 

controller sends a specific message to the autonomous algorithm controller. If the 

predefined response is not received, then the central controller prevents the autonomous 

mode from being enabled. Operation of the DBW system via joystick is still possible if 

all other checks are passed. 

Software Control: This state is the main feature of the DBW system; it receives input from the 

gamepad and autonomous controller, polls for a human override, commands the actuators, and 

sends state data back to the autonomous controller. The multitude of tasks performed in this state 
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necessitated the creation of the computation graph shown in Figure (   ). This diagram details 

every software process, function, and thread which the central controller performs during the 

software operation state, and the following discussion in this section will mirror this diagram.  

 

Figure __: Graph of Active Processes in Software-Operation State 

The central controller can be controlled via two methods, a top-level controller running 

autonomous algorithms, or through a gamepad. The central controller lacks the capabilities to act 

as a USB host for the gamepad, so an intermediary microcontroller (the Arduino) is used as an 

interpreter for the gamepad. Therefore, the central controller uses UART (Universal 

Asynchronous Receive Transmit) serial communication protocol with both the top-level 

controller and the interpreter controller. Upon receiving a packet, the messages are parsed into (i) 

steering command, (ii) braking command, (iii) accelerator command, and (iv) additional 

peripherals commands. (i) The steering command differs based on the input priority source. The 

top level controller sets the turn rate of the steering column, whereas the joystick directly 

commands the angle of the wheels. (ii) The brake command sets the depression of the brake 
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pedal via a linear actuator from not pressed to fully depressed. (iii) The accelerator command 

sets the ACC (Accelerator Contention Circuit) voltage level to the equivalent accelerator pedal 

depression. (iv) The fourth part of the message is a bit array that toggles the different peripherals 

discussed in Section X. 

The braking and steering subsystems use DC actuators to control position, which are 

powered via the high current 12V power supply. Connecting the actuators directly to the power 

supply would mean that the actuators are continuously active at full throttle in a single direction, 

therefore, H-Bridge Motor Drivers were used to control the actuators. H-Bridge Motor drivers 

allow for the central controller to adjust the polarity and power of each actuator using two PWM 

(Pulse Width Modulation) channels (one for each direction) by changing the duty cycle of each 

PWM signal.  

When a position is commanded to the braking or steering subsystem, the value is passed 

as the reference input of a control loop, where the current position is determined with 

potentiometers. A simple discrete PID controller with saturation limits was designed for each 

subsystem, where the output of the controller (or the control effort) was scaled to be the duty 

cycle of the PWM signal pair.   

In order to read logic inputs, two methods are employed: periodic polling and edge 

interrupts. A global timer is configured to raise a flag at a periodic rate, which triggers the central 

controller to read and store the logic level of several GPIO pins. This method is used for 

non-time-sensitive inputs, such as the mode select panel. For cases where transitions are 

important or time-sensitive, interrupts are used. Interrupts are used to read the speedometer 

rotary encoder and detect E-Stops, as the system needs to respond as quickly as possible to those 

inputs.  
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There are 4 cases that will cause the Drive-by-Wire system to disengage during 

operation. Any of these failures will result in the DBW system entering the 

MID-OPERATION_ERROR state: 

1. Serial Communication Failure between SPC58 & Joystick/Autonomous Controller: This 

error case covers two different types of failure. The first type of failure involves a 

bit-level desync between the two communication members, which is detected by 

analyzing the head and tail of each message to ensure proper placement. In this case, the 

partial message is disregarded and the system begins to parse incoming serial data 

bit-by-bit until the contents of the RX buffer align with the expected packet structure. The 

second type of failure occurs when a valid message is passed in with a checksum that 

fails to validate the checksum calculated using the rest of the message. 

2. Braking Subsystem Failure: This is detected through an analysis of the error between 

commanded and actual brake actuator extension. Additionally, if the brake pedal is less 

depressed than what the actuator is commanding, an error will also be generated. This test 

can determine both mechanical failures of the actuators, and software failures in 

communication between the actuators and the central controller.   

3. Steering Subsystem Failure: This is identical to the braking subsystem failure, but with 

the error being observed between commanded and actual steering column angle. See 

Section XI.A (Next Steps) for future iterations. 

4. Accelerator Failure: The error between the commanded voltage on the ACC (Accelerator 

Contention Circuit), and the actual (as measured by the ADC) exceeds a threshold, 

indicating a potential electrical failure of the ACC assembly. 
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If one of these errors occurs, entering E_STOP_ERROR state would be suboptimal; for example, 

if there is an issue with the brake actuator, the shutdown routine would be rendered useless. This 

necessitated the creation of MID-OPERATION_ERROR state, in which the DBW system plays a 

tone which alerts the driver to take manual control of the vehicle. 

Manual Control: In terms of functionality, this state operates similarly to the idle state; the 

DBW system rejects software input and allows the user to manually drive the vehicle. The 

distinction lies in the transition from manual control to software control: rather than requiring the 

startup tests to be run, the DBW system can transition directly to software control. This is 

because it is assumed that the startup tests have already been run once and that the mid-operation 

checks can catch any mechanical or software failures that have arisen since the startup of the 

vehicle. A further distinction is that in this state if any emergency stops are pressed the DBW 

system will enter the shutdown routine. This is not the case with the idle state. 

Error Modes: There are three broad categories of errors; errors that arise from the detection of 

system failures during startup, errors detected during system operation, and the pressing of an 

emergency stop. These three error states are discussed below. 

1. STARTUP_ERROR: This state is entered following a startup check error. The DBW 

system issues a loud tone and prevents the DBW system from being started. To leave this 

error state, the user will need to press the “System Off” button on the mode select panel, 

after which the DBW system will return to its idle state.  

2. MID-OPERATION_ERROR: This state is entered following a mid-operation error. The 

DBW system issues a loud tone and prevents the DBW system from being re-started. To 

leave this error state, the user will need to press the “System Off” button on the mode 

select panel, after which the DBW system will return to its idle state.  
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3. E_STOP_ERROR: This state is entered following any E-stop being pressed. The brake is 

pressed fully until the vehicle speed is 0, after which the DBW system remains in the 

error state. To leave this error state, the user will need to press the “System Off” button 

on the mode select panel, after which the DBW system will return to its idle state.  

 

Communication Methods: 

 

Figure __: Command Packet to- and Response Packet from- Central Controller 

As shown in Figure X, the central controller is capable of taking input from either the 

top-level controller or a connected joystick. Regardless of the connection, the central controller 

expects to receive a twelve-byte command packet containing the vehicle’s desired steering angle, 

percentage of brake applied, percentage of throttle applied, and an error code (if applicable); as 
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well as toggles for the headlights, left and right turn signals, horn, windshield wipers, gear shift, 

and emergency stop. From this data, a checksum is calculated and appended to the end of the 

packet. The packet then has head and tail indicators attached, which allow the system to detect 

when a set of data fits into a valid packet structure. When the central controller sends a report 

packet upstream to the top level, the same process is repeated with much of the same data, save 

for the addition of steering velocity, the % throttle statistic being swapped for the vehicle’s 

current speed, and space reserved for the error code being expanded. After these alterations, the 

size of the response packet comes out to seventeen bytes  

Design Verification 

Since there are several edge cases that cause the state machine to exhibit errors, 

prolonged testing was done with the intent to break the software functionality of the system. By 

having individuals who weren’t familiar with the project use the DBW system, areas of 

unintended behavior and unhandled streams of execution were uncovered. The feedback received 

was that the system is intuitive to use, and would be easy for a developer to test their algorithms. 

Since the design of the state machine was driven by the concept of operations, which was again 

designed around the desires and requirements of an intended user (a graduate researcher), the 

feedback received by users of our experimental setup proves that the design was successful and 

fulfills its purpose. The final version of the command-packet communication protocol was tested 

by connecting the gamepad and converting its output into command packets. These packets were 

received and interpreted by the central controller, which was analyzed for any discrepancies. The 

communication checks (both bit-level and byte-level) proved to be successful in receiving data, 

as communication failures arising from the physical layer are detected immediately.  
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VI. Safety Systems 

Design Specification 

The UCSC campus administration has mandated that the DBW system needs to be able to 

yield manual control to the user at any point. As a further constraint, the system needs to be 

intuitive such that any user would be able to operate the system without having to understand the 

underlying state machine. There is a balance that needs to be achieved between the expected 

functionality specified in the concept of operation, and the technical aspects of the state machine. 

Thus, the goal is to abstract the technical minutiae in a way that is clear to any user, whilst also 

maintaining strict safety requirements. The following sections will delve into the design choices 

made toward this goal, covering both the underlying technical details and the intended user 

interaction with the safety systems. 

 

Signal Blending 

As requested by the Hybrid Systems Laboratory, the DBW system should not be selecting 

a singular source of software input to the vehicle, but rather commanding the priority of the 

different inputs. For example, if an autonomous lane-following algorithm drifts to one side of the 

road, the user should be able to easily pick up the gamepad and readjust the vehicle, and once the 

vehicle is in a better position, resume autonomous control. The following table dictates the 

control scheme for facilitating this signal blending for priority, covering both overrides and 

emergency stops. In the table, DC (meaning don’t care) represents that the detected input will 

result in no state transitions. In the event that braking input is detected, during manual operation, 

this signal is meaningless since the vehicle is already being manually controlled. If the vehicle is 

being controlled by either of the software modes, then detected braking will result in the 
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disengagement of software control and yield vehicle control to the driver. If the user is driving 

manually or with the gamepad, the detection of the gamepad input will result in no transitions. 

However, if the vehicle is being autonomously controlled, like the lane-following case 

mentioned above, detected gamepad input will yield control over to the gamepad (until the 

autonomous button on the mode select panel is pressed again). If any of the three emergency 

stops are pressed, regardless of the DBW control mode, the shutdown routine will be engaged. 

 Manual Driving 

(system on) 

Gamepad Mode Autonomous Mode 

Braking Input Detected DC Switch to manual Switch to manual 

Gamepad Input Detected DC DC Switch to gamepad 

Mode Select E-STOP Shutdown routine Shutdown routine Shutdown routine 

External E-Stop Shutdown routine Shutdown routine Shutdown routine 

RC E-Stop Shutdown routine Shutdown routine Shutdown routine 

Table __: Priority Truth Table of Software Inputs 

 

Emergency Overrides 

There are 2 forms of emergency override: 

1. The user presses the brake while the gamepad or autonomous system has the highest 

priority, which yields control to the driver.  

2. The user commands the gamepad while the autonomous system has the highest priority, 

which yields control to the gamepad. 

In the case of the first override, the DBW system will ignore software input and will enter 

the “Idle” state. Once the gamepad or autonomous button is pressed, software control of the 

 



27 

vehicle will resume. In the second case, the gamepad will take control if an input greater than a 

threshold is detected, and the gamepad will yield control back to the autonomous controller after 

the autonomous button is pressed. 

 

Emergency Stops (E-Stops) 

There are three redundant full emergency stops: 

1. RC transmitter/receiver  

2. External E-Stop 

3. Mode Select Panel E-Stop 

 

Any of these E-Stops being triggered will transition the DBW system to Error Mode 3, in 

which the brakes are applied until the vehicle reaches a complete stop. The DBW system will 

then sit idle in this error state until the reset button is pressed. It is important to note that once the 

vehicle is in the error state, the full state transition from start → setup → operation will need to 

be performed.  

 

Design Verification 

Through the system on a bench implementation of our DBW system, we have achieved 

functional validation of our safety systems. We can prove that the state machine reacts 

accordingly to input from the emergency stops and detected input from the gamepad and brake 

pedal. Without a physical vehicle to test on, however, it is difficult to judge the efficacy of 

certain aspects such as the shutdown routine. We can prove that we are in fact extending the 

brake actuator, but without experimental observation of how long it takes the fully extended 
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actuator to bring the vehicle to a halt, we cannot provide accurate performance specifications to 

our client.  

 

VII. Steering System 

Design Specifications 

In order to successfully actuate the steering system of the vehicle, the Drive-by-Wire 

system needs to act on the vehicle’s steering column with the level of speed, strength, and 

precision that a human driver would. These specifications are outlined below: 

➢ Maximum Error from Commanded Steering Angle: 1 degree 

➢ Minimum Time to Reach Commended Angle: 2 seconds 

➢ Minimum Precision to Commanded Angle: 0.25 degrees 

Additionally, the steering subsystem must not hinder the user's ability to control the 

vehicle using the steering wheel when the Drive-by-Wire system is inactive.  

Functional Overview 

System-on Behavior: When the Drive-by-Wire system is active, the central controller constantly 

receives serial data from an input device such as a gamepad. From that data, the central 

microcontroller passes the commanded steering angle (see Section 5) into a feedback control 

loop. The microcontroller receives feedback from the steering demo in the form of a linearized 

voltage from a 10-KΩ potentiometer that is mechanically attached to the steering column. The 

linearized voltage is fed into one of the central microcontroller's built-in 12-bit analog-to-digital 

converters. The microcontroller outputs two PWM signals (for directionality) to an IBT_2 dual 

H-Bridge motor controller (BTS7960) which controls the speed of a brushless 12V motor that 

mechanically turns the steering column. 
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System-off Conditions: While the Drive-by-Wire system is active, if the user presses the “OFF” 

button on the mode select panel or depresses the brake pedal of the vehicle with their foot, the 

central microcontroller will shut off all actuators and return to the idle state, where control of the 

vehicle’s steering wheel is yielded to the driver. 

Emergency Stop Behavior: If one of the Emergency-Stop buttons is pressed while the system is 

active, the central microcontroller will apply the brake actuator for five seconds in order to bring 

the vehicle to a stop, and an alarm will sound to notify the driver that a critical event has 

occurred, and the system will then shut down into the idle state and control of the vehicle’s 

steering wheel will be yielded to the driver. The user must restart the Drive-by-Wire system if 

they desire functionality to be resumed. 

Subsystem Error Behavior: As described in Section #5, the central microcontroller constantly 

checks for system errors, if one is detected, the system will shut down as if it had been turned off 

manually. The appropriate error message will be displayed on the mode selector’s built in LCD 

display, and an alarm will sound to alert the driver that control has been yielded to them. 
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Mechanical design 

 
Figure __: Steering Demo CAD model (isometric view) 

A demo was created to visualize the mechanical authority that the Drive-by-Wire system 

has on the steering column of the vehicle (Figure ___). 

An SLA Resin printed belt sprocket is mounted to a ¾” steering column using a 

mountable shaft collar. A belt sprocket is mounted to the output of the potentiometer with a set 

screw. An XL Series Timing belt from McMaster Carr links the potentiometer to the column, and 

a resin printed bracket tensions the belt sprocket and feedback potentiometer against a frame 

member.  

The structural frame members, gears, and belt sprockets have been laser cut from ¼” 

black acrylic or resin printed with clear V4. Number 6 countersunk machine screws and steel 

locknuts fasten the acrylic to eight corner brackets. 

In order to simulate an analog, bipolar DC source, an H-Bridge motor drive was used 

between the 12V DC supply and the rotary actuator. A dual PWM input from the central 
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controller adjusts polarity, while the duty cycle controls magnitude (as described in section 5). 

The IBT_2 driver is fastened to our system in a dedicated 3D printed enclosure with the intent to 

protect it from vibration and ingress. 

 

Software Control 

The 5-turn rotary potentiometer attached to the steering column via a belt feeds an analog 

voltage to a 12-bit ADC (4096 quantization levels) if using the SPC58EC board, or 10-bit ADC 

(1024 quantization levels) if using the Raspberry Pi 4. However, since the Polaris GEM e2 has a 

four-turn steering column, the range of motion is restricted to be in the range  if [410,  3686]

using the SPC58EC and  if using the Raspberry Pi 4. The steering position is [102,  922]

commanded in the form of 25.00 degrees and scaled to be in the range of motion.  ±

A discrete PID (Proportional Integral Derivative) loop is then implemented in software 

on the Raspberry Pi 4 to control the position of the column with a sampling rate of 20Hz, with 

the dynamic model (plant) being approximated as a simple integrator (Figure __). The gains 

were tuned, which resulted in the values of . Additionally, to account 𝑃 = 10,  𝐼 = 1,  𝐷 = 0. 2

for the limitation of the motor, saturation limits of one revolution per second are implemented.  

 

Figure __: Discrete PID loop of an integrator 
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When implemented in software, is scaled to be in the range  and used as 𝑥 ˙ [− 100,  100]

the duty cycle for the PWM pair controlling the H-Bridge, and  is the potentiometer reading. 𝑥

Figure __ shows the step response of the system when commanded one revolution. The response 

has a rise time of 1.00s and an overshoot of 1.91%.  

 
Figure __: Response of the steering column control loop to a unit revolution input.  

 

The frequency response of the system was also analyzed to determine how responsive the 

system was to oscillations in the input. Figure __ shows the tracking of the system for a sine 

wave input of 0.25Hz, 0.5Hz, and 1Hz. The system had a gain of 0dB, -0.34dB, and -1.06dB, 

and a phase loss of 13.5°, 27°, and 54° respectively.  
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Figure __: Frequency response of the steering system to three different frequency inputs. 

 

The frequency response of the system as the input approached 1 Hz was not desirable, 

and could be improved with a lead compensator, as the DC gain beyond 1 Hz is negligible. 

However, the easiest way to improve performance would be to increase the sample rate. On the 

Raspberry Pi 4, this cannot be achieved due to hardware limitations. The Raspberry Pi 4 has a 

maximum PWM frequency of 100 Hz, and changing the PWM duty cycle at a rate close to or 

faster than that frequency would change the RMS voltage that the actuator receives, greatly 

reducing the stability and performance of the control loop. Additionally, specifying a better 

actuator would mean that the system could track faster.  

Furthermore, while this model may work for the System on a Bench, it is not 

representative of the actual steering column. The torque to turn steering columns depends on a 

myriad of variables, such as stiction, speed of the vehicle, and terrain, among other factors. It is 
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extremely difficult to simulate all of the parameters without an actual vehicle. PID loops have the 

benefit that they tend to remain stable even if the plant varies from the model. However, the 

performance of the control loop will vary depending on the dynamics of the actual plant.  

 

Circuit Design 

Comprehensive circuitry documentation for the steering system is included in the system 

wiring diagram (See Appendix __) 

 

Design Verification 

In order for a vehicle implementation of our system to be considered a success, it must 

meet several criteria. It must be able to turn the wheels of the vehicle to 25 degrees in each 

direction. It also has to be able to hold the commanded position to less than 1% error. Figure __ 

demonstrates a steady state deviation of 0.48% of the total range, which is within our margin of 

error. Additionally, it is desirable for the column to be able to rotate one revolution (12.5° change 

in the wheel angle) in less than 1.5s in order to enable for smooth and decisive steering. With the 

actuator we chose for the System-on-a-Bench, the steering column can turn at 1rpm. 

Furthermore, a frequency response of -3dB gain and 30° phase loss are desired at 1 Hz. This 

system was able to meet the gain margin with a gain of 1.06dB, but the phase loss was not met as 

the system suffers from 54° phase loss (Figure __). Fortunately, at 0.5 Hz, the system did meet 

the phase requirement.  

Next Steps 

Manual override for the steering subsystem was not implemented in the 

System-on-a-Bench. Implementing this functionality on a vehicle would require the use of a 
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rotary torque sensor in order to detect a user attempting to steer the vehicle. On many vehicles 

with an Electronic Power Steering System (EPS), this hardware is already present. In theory, the 

steering subsystem could be fully implemented on a vehicle by simply interfacing with an 

existing EPS system (likely over CAN), using the pre-existing actuator to perform steering 

actions when the Drive-by-Wire system is active. Configuring the steering subsystem to function 

as an EPS module in the System Off state is a potential solution if the vehicle does not have an 

existing EPS or the EPS module cannot be interfaced with. In order to achieve this, a torque 

sensor is needed on the steering column to determine the torque and direction the user is putting 

into the system to determine the amount of compensation needed to help the user. Additionally, a 

current sensor to the built in EPS module would further aid in estimating the compensation. 

Otherwise, the steering actuator for the Drive-by-Wire system would need a mechanical 

disconnect from the steering column of the vehicle so that a user of the system would not have to 

resist the force of the steering actuator when the system is inactive. 

 

VIII. Braking System 

Design Specifications 

In order to successfully actuate the braking system of the vehicle, the Drive-by-Wire 

system needs to act on the vehicle’s brake pedal with the level of speed, strength, and precision 

that a human driver would. These specifications are outlined below: 

➢ Error from Commanded Pedal Position: 1 percent 

➢ Minimum Time to Fully Depress Pedal: 0.5 seconds 

Additionally, the braking subsystem must allow for a user to press the brake pedal and 

any time during operation in order to override the Drive-by-Wire system. The system must 
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relinquish control of the vehicle to the driver within 200 milliseconds of the pedal being 

depressed. Lastly, the braking subsystem must not hinder the user's ability to control the vehicle 

using the brake pedal when the Drive-by-Wire system is inactive.  
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Functional Overview 

System-on Behavior: When the Drive-by-Wire system is active, the central controller constantly 

receives data from the input device. The central microcontroller passes the commanded brake 

pedal position (see Section 5) into a feedback control loop. The microcontroller receives 

feedback from the braking demo in the form of a linearized voltage from an automotive standard 

4-KΩ brake pedal position sensor that is mechanically attached to the brake pedal. The linearized 

voltage is fed into one of the central microcontroller's built-in 12-bit analog-to-digital converters. 

The microcontroller outputs two PWM signals (for directionality) to another IBT_2 dual 

H-Bridge motor controller (BTS7960) which controls the speed of a feedback linear actuator that 

controls the depression of the brake pedal. 

System-off Conditions: While the Drive-by-Wire system is active, if the user presses the “OFF” 

button on the mode select panel or depresses the brake pedal of the vehicle with their foot, the 

central microcontroller will shut off all actuators and return to the idle state, where control of the 

vehicle’s brake pedal is mechanically yielded to the driver. 

Emergency Stop and Subsystem Error Behavior: The user of the vehicle will always have 

mechanical control of the brake pedal and will be able to override or even overpower the 

Drive-by-Wire system if necessary. 
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Mechanical design 

 

Figure __:  

 

Figure __: Braking demo CAD model. (Left) Side view. (Right) Isometric front view. 

A demo was created to visualize the mechanical authority that the Drive-by-Wire system 

has on the brake pedal of the vehicle (Figure ___). 
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A placeholder ‘brake pedal’ is made from two pieces of laser cut acrylic and a PLA 

printed pedal body which is bonded together with epoxy resin. The pedal is mechanically held 

together by ¼-20 bolts and nylon locking fasteners. The ‘brake pedal’ is mounted to a base plate 

with resin printed mounts and has a steel compression spring that returns the pedal to an upright 

position after being depressed. 

A feedback linear actuator is also mounted to the base using ¼-20 hardware and resin 

brackets. An arm of similar construction to the ‘brake pedal’ is attached to the output rod of the 

actuator so that a contraction of the actuator results in a depression of the brake pedal, but the 

pedal can also be pressed independently from the actuator (this is important for manual override 

capabilities).  

 Two pedal position sensors are mounted to the base and attached to both the linear 

actuator arm as well as the ‘brake pedal’ so that the two positions can be read independently by 

the central microcontroller with on ADC input. 

The setup for powering the linear actuator is identical to the steering column (Section 

VII.C). Two PWM channels are used to control another IBT_2 H-Bridge motor driver. 

 

Software Control 

Through testing, the limits of the position are determined to be . The brake [0,  344]

position is commanded as an integer from 0 to 100, and scaled to be in the aforementioned range. 

A second discrete PID loop is implemented in software (Figure __), estimating the plant to be an 

integrator with saturation limits determined through motor specifications and a plant of with 

gains of  determined through manual testing.  𝑃 = 10,  𝐼 = 1,  𝐷 = 0. 2
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Figure __ shows the step response of the brake pedal when commanded to full extension 

from rest. The response has a rise time of 1.80s with a negligible overshoot and settling time.  

 

Figure __: Step response of the brake pedal to full compression. 

Figure __ shows the response of the system from full compression to full extension. The 

rise time of this command was 1.55s, which is 0.25s faster than the compression command 

despite traveling the same distance. 
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Figure __: Step response of the brake system to full extension. 

The difference between extension and compression can be attributed to the dynamic of 

the spring at the end of the linear actuator. For the system on a bench, a more accurate plant 

would have been , where  is the input control effort,  is the velocity at �̇� = 𝐶
1
𝑢 − (𝐶

2
𝑢)𝑘𝑥 𝑢 𝐶
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the given control effort with no load and  is loss in velocity due to the load caused by the (𝐶
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spring. Actual vehicle brake pedals have a much more complex dynamic, as the pedal system 

consists of multiple spring damper systems [SOURCE NUM]. This system could be 

approximated as , where  is the load due to the damper and �̇� = 𝐶
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velocity of the system. Since the velocity lost to just the spring (which has a spring constant 

smaller than anything found in a real vehicle) is nontrivial (i.e  is not approximately ), 𝐶
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1

a better actuator must be sourced before being implemented in an actual vehicle. 
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Manual override detection was implemented into this subsystem. A second brake pedal 

sensor is attached to the brake pedal, which is also read with an ADC. A linear relationship 

between the pedal sensor on the linear actuator and the brake pedal is calculated. If the difference 

between the estimated position of the brake pedal and the ADC position of the brake pedal 

exceeds a threshold value, the system determines that the user is manually depressing the brake 

and cedes control back to manual inputs.  

 

Circuit Design 

Comprehensive circuitry documentation for the braking system is included in the system 

wiring diagram (See Appendix E) 

 

Design Verification 

This system does not quite meet the specifications for a vehicle implementation of 

Drive-by-Wire as outlined in the Criteria for Success Matrix. The system fails to reach full 

depression in the required time of 0.5 seconds, and cannot hold the commanded position to a 

maximum error of 1% (Figures __ & __). The “Control Effort” in both figures is at 100% for at 

least the first 1.5 seconds. This means that the actuator is attempting to move at maximum speed; 

therefore achieving a faster response with a more aggressive PID controller would yield minimal 

improvement to the response time. The slow response is an inherent issue with the linear actuator 

chosen for the system. Additionally, the steady state response of the system fails to converge to 

the commanded position within the acceptable range of 1%. Noise may cause uncertainty in the 

position of the brake read by the ADC, which in turn causes the controller to overcorrect. 

Applying filtering to the brake position signal or isolating the low voltage and high voltage 

 



43 

system better may correct the unwanted noise. The system is able to detect user input on the 

brake pedal and return to the manual control state. If the user depresses the brake pedal further 

than the current actuator position, the central controller detects the difference in positions and 

transfers control of the entire vehicle back to the user.  

  

Next Steps 

The design for the braking subsystem works for the bench simulation, but due to the 

actuator speed, is not recommended for use on an actual vehicle. One potential solution would be 

adding an additional actuator which can fully depress quickly (either pneumatic or hydraulic). 

The existing linear actuator could continue to be used for precise braking motions, and the 

secondary actuator would be used for emergency braking. A more expensive and vehicle specific 

option would use a hydraulic control unit, which could directly control the amount of pressure in 

the brake systems. This solution would also be able to multiplex input from the braking pedal, 

allowing for fully integrated manual override. This approach would also contribute to the 

modular design, since the entire braking system is abstracted from the central controller, meaning 

it isn’t vehicle specific. The issue faced by our team when attempting this approach is the 

difficulty in acquiring an HCU as well as the complexity of installing and interfacing with one; 

there are several layers of legislative hurdles that need to be passed in order to implement this 

solution on a vehicle. Although this is the most technically proficient solution, opting for the 

secondary fast-actuator is more feasible for implementation. 
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IX. Throttle System 

Design Specifications 

Most cars nowadays have a method of digitally controlling the throttle from the 

accelerator. The Polaris GEM e2 has two accelerator pedal sensors (APS) to control the throttle 

of the vehicle. Figure __ displays the relationship between the pedal and the APS output. The 

APS scales linearly from at rest to fully depressed; additionally, the two sensor outputs are scalar 

multiples of each other, where APS2 is half of APS1 with a margin of error of 3.5%. 

 

Figure __: The relationship between the depression of the accelerator pedal and the APS output 

[1]. 

In a vehicle, the APS1 and APS2 signal lines leaving the accelerator carry position data 

(in the form of an analog voltage) directly to the vehicle central controller, which processes this 

data into the motor / engine throttle. For our modular drive by wire system to control the inputs 

to the vehicle controller directly, a circuit was devised which can  set the output of APS1 and 
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APS2 to any value in the range shown in Figure __. In order to follow the safety and manual 

control requirements outlined in section ___, the devised circuit needed to have the additional 

feature that, when disabled, connection of the APS1 and APS2 lines are reconnected to the 

vehicle controller and the accelerator pedal function is restored.  

 

Figure __: Simplified Block Diagram of the Accelerator Control Methods 

By disconnecting the accelerator pedal output (shown above in Figure __) and instead 

using control signals sent directly to the vehicle controller, the system will also have the ability 

to detect manual override by the depression of the accelerator pedal. The APS1 and APS2 signals 

can be read using an ADC channel of the central controller, and changes in position of the pedal 

resulting from manual override can be detected as per the safety requirements in Section __.  

The circuit which dealt with the ‘point of contention’ caused where the two input signals 

met and needed to be selected was developed following the above requirements and 

implemented in the System-on-a-Bench. The circuit has outputs which are settable over an SPI 
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connection, and the global enable. When the global enable is off, the output of the circuit will be 

the APS1 and APS2 signals passed through directly, with the rest of the ACC electrically isolated 

from the vehicle signal lines.  

 

Circuit Design 

 See the next page for our detailed circuit design for the accelerator contention circuit. 
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Figure __: ACC Circuit Schematic 
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 In the final implementation of the ACC, an MSP4812 10 bit DAC (U1 in Figure __) is 

used to produce an output signal mimicking APS1. This is followed by a 50% voltage divider 

(R1 and R2), which will produce APS2. In order to isolate the DAC output from the rest of the 

system, two single supply TCL081 operational amplifiers were used in a non-inverting 

configuration. Since the maximum output of the DAC that was selected for the final 

implementation was Vdd-1V=4.00V, the op amps implement a 110% gain, using R3-6, so that the 

maximum reachable value at the output is 4.40V. In practice, any value above 4.2V is ignored by 

the vehicle controller, since all larger values correspond to a 100% throttle.  

 The output of the circuit is selected using two signal relays which are powered from the 

same 5V rail and the DAC and op amps, and can be switched on and off using the global enable. 

Toggling the global enable gates on the TN2106 MOSFET and allows the relays to switch on. 

When the global enable is set to a logic low, the relays disengage and the signal from APS1 and 

APS2 (VEH0 and VEH1 in the diagram) are allowed through the circuit without interruption. 

The use of signal relays in this manner allows the ACC to be electrically isolated from the 

vehicle when powered off, so that no errors are detected by the vehicle controller.  

 The final implementation of this device was routed to a PCB which was used for the SoB 

testing of the design. The layout includes an unused additional filtering capacitor on the DAC 

power line, which can be implemented to reduce noise in a specific application or use case (see 

Appendix L).  
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Figure __: Final ACC implementation 

Part selections for the final accelerator contention circuit PCB are outlined in Appendix B. 

 

Functional Overview 

System on behavior: When the DBW system is engaged by any of the methods outlined in the 

User Interface section, the global enable will be set to a logic HIGH, and the relays will be 

engaged. Once this happens, the DAC can be set to any value within the APS output range. Since 

the DAC has 10 bits of precision, and the actual range of valid output values (from the APS 

ranges in Figure __) corresponds to digital values of 244 and 950. Each value in between these 

two corresponds approximately linearly to a voltage output between 1.08V and 4.20.  

System off behavior: When the system is disengaged by the user in any of the methods outlined 

in the User Interface section, Safety section, or in the event of a power failure, the global enable 

pin will become logic LOW. In this case, the relays will not be powered, and will be restored to 

their mechanical equilibrium state, allowing the APS1 and APS2 channels from the vehicle 

accelerator pedal to pass through to the output of the ACC unimpeded. The relays also provide 
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isolation between the ACC when it is in the off state and the vehicle electrical system, because 

there is no linkage between the two systems. 

Error reporting: Errors involving the DAC and the ACC can be detected by the central 

controller by the use of several ADC channels to read the inputs and outputs of the ACC. This 

enabled the central controller to detect changes in the accelerator pedal position, which was 

represented using a potentiometer, detecting manual override. It also allowed for the DBW 

system to run its mid operation checks to ensure that the output of the ACC was actually the 

desired output. This was determined by the team to be the best method of mid operation 

checking, because it was representative of the way that the vehicle controller would read the 

APS1 and APS2 inputs. The DAC connection cannot be checked over SPI interfacing because 

the DAC does not respond over serial, but does change it’s output according to input it receives. 

 

Software Control 

The MCP4812 is a 10 bit digital to analog converter (DAC) which uses SPI 

communication with the central controller to set the output voltage. As the APS signal is 

constrained to the range [1.08, 4.20] volts, the full range of the DAC is not used. If the system is 

in software control mode, the global enable gets switched on and the contention circuit selects 

the DAC’s output as the signal to pass to the vehicle. The central controller receives a desired 

throttle percentage in the range [0, 100], scales the value to be in the APS range, converts the 

voltage level to quantization levels, and sends a message to the MCP4812 to update the output 

voltage. If the system is in manual mode, the global enable is off and any output of the DAC is 

overwritten by the APS.  
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Due to the possibility of corruption due to noise on the communication channel or a 

physical disconnect of the ADC from the central controller, a mid operation check is employed. 

In software operation mode, the output of the contention circuit is read by an ADC. If the read 

value of the ADC differs from the commanded value of the DAC for multiple consecutive reads, 

then a mid-operation error event is triggered.  

Additionally, the voltage of the APS output is sampled periodically with and ADC. If the 

value of the APS signal rises above the no depression voltage of 1.08V, then the central 

controller interprets this as the user attempting manual override and cedes control to the user. 

 

Design Verification 

 Functional testing of the ACC included observing the output in response to a commanded 

a ramp, and verification of the Global Enable switching behavior. Applying a regulated 5V to the 

power input of the ACC and toggling the global enable, we were able to verify that the relay 

driver circuit worked as designed. We also ran the circuit with the enable toggled HIGH for 

several hours, but the power draw remained stable and the relays did not overheat.  

 In order to determine that the output of the ACC was valid through the whole digital 

input range, we additionally applied a ramp input and observed the output voltage using an 

oscilloscope. Shown below in Figure __, where the ramp is set to run from 0.52V to 4.25V. The 

initial downward spike was a result of the scope looping, and the measurements before -0.5s can 

be ignored. 
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Figure __: Initial ramp testing with ACC 

  As can be seen in the initial test, there is consistent non-negligible noise on the 

output channel of the ACC, which might cause control issues when the channel is being read. To 

determine the source of the noise so that it can be prevented in the future, further testing was 

performed with and without the system on a bench power supply. 

 

Figure __: ACC Output Commanded to 2.20V with Power Supply On 
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  In this view, with a constant commanded value at the output of the ACC, the content of 

the noise on the output line becomes more clear. In the figure above, the Fourier analysis of the 

signal shows a major 60Hz component of noise, followed by several other peaks at 90kHz, 

170kHz, 260kHz, 270kHz, and the largest peak at about 350kHz. The 60Hz fundamental is likely 

a residual from the 5V supply used to power the central controller, which in turn regulates the 

voltage and outputs it to the ACC, but the other high-frequency components are unaccounted for. 

The peak to peak of 21.55mV that was measured is a very large variation on a system with little 

inherent noise. Disabling the larger SoB power supply, but leaving the power line to the ACC 

intact had a major impact on the output voltage stability, shown in the figure below. 

 

 

Figure __: ACC ACC Output Commanded to 2.20V with Power Supply Off 

In this case, with the commanded output unchanged but the 12V SoB power supply 

disconnected, the noise is grammatically reduced. The peak-to-peak variation changes from 

21.55mV to 4.71mV. In both cases, the output variation peak to peak was less than our 
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requirement of 3.5% error, but simple filtering could greatly reduce the output noise. 

Disconnecting the SoB supply alone reduces the peak-to-peak noise by 78.1%, and also entirely 

removes the 90kHz, 260kHz, 270kHz, and 350kHz harmonics. The only conclusion to draw 

from this is that the power supply itself is producing (or causing other systems to produce) the 

excess noise. The output of the ACC could be improved with a low pass filter to remove the high 

frequency noise, followed by a band reject filter to remove the 60Hz component as well.  

 The ACC is, without a doubt, not noise resistant and will need to be redesigned with 

these findings taken into account before it can be considered safe to implement on a vehicle.  

 

 

X. Peripherals  

In addition to being able to drive the vehicle, the Drive-by-Wire needs to be able to 

interface with different vehicle peripherals. Vehicle peripherals are designed to enhance vehicle 

safety and improve functionality, so it is important for the Drive by Wire system to be able to 

interface with them. Both the top level controller and the joystick can control various peripherals 

with the peripheral bus portion of the command packet.  

 The vehicle’s peripherals are controlled by independent 12V electrical connections 

running throughout the vehicle. Our system uses a number of power relays that are connected to 

ground and controlled by various GPIO pins on our central microcontroller (outlined in 

Appendix F). These relay circuits will be spliced into an existing vehicle wiring harness in 

parallel so that each peripheral can be controlled by our DBW system or by standard vehicle 

control. 
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Peripherals Interfaced: 

● Horn 

● Wipers 

● Reverse 

● Turn Signals 

● Headlights 

 

Design Verification: 

 As mentioned earlier in this section, having proper access to the peripheral systems of a 

vehicle is essential to the safe operation of a vehicle. As each of the peripherals on the 

system-on-a-bench is controlled by a GPIO toggle, testing was conducted via simple audio and 

visual checks. Unfortunately, the system-on-a-bench does not include representations of the 

windshield wipers or the reverse-toggle, so these systems have yet to be verified. 

 

XI. Conclusion 

Success Criteria Verification 

In the Criteria for Success Matrix (Appendix ___), metrics are set for considering what a 

successful implementation should be able to accomplish. The central controller can successfully 

communicate with the joystick controller and a top-level controller to parse commands. 

However, the central controller was not able to display the current state to the user due to 

corruption in the display message. Additionally, returning states and errors to the top level 

controller was never tested as an autonomous controller was never designed. 

 



56 

The central controller is able to run startup and real time tests to ensure that the 

subsystems are operating as intended. The controller checks the braking, steering, and throttle 

subsystems in the startup phase, and is currently capable of checking the throttle and 

communication subsystems during operation. Braking and steering mid-operation checks are not 

implemented on the System on a Bench.  

The steering subsystem is able to track step inputs of unit revolutions within one second 

and less than 1% error in steady state. For a sinusoidal signal at 1Hz, the steering subsystem is 

able to keep a gain greater than -3dB, but fails to keep the phase loss to less than 30°. 

Additionally, manual override is not implemented in the system on a bench. 

The braking system is not able to meet the command input response specifications in the 

Success Criteria Matrix. The system takes longer than 0.5 seconds to fully depress and does not 

hold the desired position to less than 1% error. However, the braking subsystem successfully 

detects user input and adjusts the central controller’s state respectively. 

The throttle subsystem is capable of commanding the output of the simulated APS to well 

below the 3.5% margin outlined for the Polaris GEM e2. Additionally, the user can press on the 

accelerator pedal, and the system is capable of detecting the manual override.  

Finally, the System on a Bench is able to digitally control various peripherals such as the 

headlights, horn, and individual turn signals.  

Letter to Future Teams 

The system-on-a-bench implementation of the DBW system was valuable in designing 

the firmware and safety systems for the central controller, which is the layer in between 

autonomous control algorithms and the actual vehicle. These systems have been thoroughly 

tested and likely shouldn’t have to change from here on out. The steering and braking actuation 
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needs to be improved; the current solutions are slow, unsafe, and don’t meet the criteria of 

success required to place them on an actual vehicle.  

 When starting work on the system-on-a-bench, teams should begin by thoroughly 

understanding how our system works: this includes thoroughly running through the state 

machine, paying close attention to what is happening in each stage. The state machine diagram 

and software-process graph are a valuable resource for gaining this understanding.  

The first step in addressing our team’s shortcomings should be transitioning our codebase 

from the Raspberry Pi 4a to the SPC58EC-DISP microcontroller. To learn more about why we 

were unable to use the SPC58, see the Lessons Learned (Section    ). Since the software suite 

(state machine, safety checks) are all written in C, this transition should only really require work 

to be done on the driver level. This means that all SPI, input capture, timers, and serial I/O will 

need to be written using SPC5 Studio to program the SPC58 board. We have provided resources 

to familiarize future teams with the basic workflow of SPC5 studio in Appendix    , and with 

instructions on how to set up drivers in Appendix    . On our Gitlab page, the project 

“Onboarding for SPC5 Studio” provides sample workspaces which test out various drivers 

including SPI, PWM, serial, and input capture. 

Once the code base has been shifted from the Raspberry Pi to the SPC58 (this should 

hopefully take a month at most), the previous functionality of the system on a bench should be 

verified based on observations made at the beginning of the project. Converting wiring from the 

RPi to the SPC58 will take time, so teams should be cautious, careful, and methodical. When the 

functionality of the system bench post-SPC58 is the same as pre-SPC58, take a moment to relax 

and take pride in your accomplishment. 
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The next step is to implement dual software control with both the gamepad and 

autonomous controller. Since the Raspberry Pi only had a single serial channel, we were unable 

to achieve this, and thus the gamepad override during autonomous control was never fully tested. 

The SPC58 provides several serial channels, and adding a second channel after implementing the 

first should be fairly trivial. Be careful of pin placement, and consistently document which pins 

you are using on the pinout spreadsheet. 

The team should now be free to take this project wherever they or the client wants: the 

SPC58 automotive microcontroller provides a great deal of power. Should they decide to focus 

on an autonomous controller, they can use the API calls described in packet_builder.h, which 

abstracts the work and allows them to focus only on the autonomous capabilities. Should they 

decide to implement hardware in the loop (HIL) simulation, they can run the steering and 

braking potentiometer data through physics simulators to emulate actual autonomous driving. 

Should they decide to redesign the steering subsystem to implement electric powered steering, 

the interface with the central controller should be trivial due to the sheer number of IO pins that 

the SPC58 has. We hope that the platform we have developed incites creativity, and provides the 

opportunity for future students to learn about autonomous driving, perception, planning, and 

control. The following section consists of specific ways in which we think the system could be 

improved.  

Implementation-Level Next Steps 

Subsystem Microcontrollers: As discussed in previous sections, it has been highlighted that 

abstracting the vehicle-specific embedded functionality away from the central controller allows 

for improved user functionality with the system, and also allows the safety systems to be set to a 

higher standard. For the steering subsystem, this would mean a microcontroller is dedicated to 
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commanding the angle of the steering column, and receives this steering data from the central 

controller. This subsystem microcontroller would also take care of the mid-operation checks to 

verify that all electromechanical components are functioning as expected. This would be done 

similarly with the linear actuator of the braking subsystem. This approach would mean that the 

central controllers can be duplicated, and then individual teams could design methods of 

actuating the steering, braking, and acceleration of their particular vehicle. After this setup, they 

would simply need to connect their subsystem microcontrollers with the central controller, and 

the DBW system is complete. The issue with this approach would be latency from increased 

communications: an additional layer of serial communications is added between the autonomous 

controller and the actuators, and delay is extremely costly in control systems. Additionally, it 

adds another layer of liability; there is potential for the subsystem microcontrollers themselves to 

have errors, and the central controller must poll for these errors. It cannot be decided yet whether 

subsystem microcontrollers would truly benefit the DBW system. 

CAN (Controller Area Network) Based System: Rather than designing custom methods of 

actuation for each subsystem, research groups could alternatively control the vehicle using 

actuators already on the car, namely the electric power steering and built-in hydraulic control 

units of the vehicle. This would require understanding how the vehicle’s main microcontroller 

(which is referred to as the Vehicle Control Module (VCM) on the Polaris Gem), communicates 

with these units over the CAN bus. In order to accomplish this, intensive testing and analysis 

must be performed to understand the message structure, frequency, and other communication 

properties. Once this has been completed, these signals can be produced by the central controller 

(or subsystem microcontrollers capable of CAN communications), and sent to the EPS and HCU. 

This would then allow for control of the steering and braking systems of the vehicle without the 
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need for external actuation. The constraint of this solution is that a target vehicle is required to 

have EPS and an HCU (which limits the range of target vehicles). Additionally, implementing a 

safe method of multiplexing manual and software input to the steering column is tricky, and may 

not get approval by the UCSC safety administrators. 

Ethernet Communications: Early in the project, it was identified that ethernet is the best 

method of communication for an autonomous controller. Many sensors use ethernet to 

communicate (the Hokuyo LiDAR for example uses Ethernet 100 Base-TX for data 

transmission), so adding the central controller to the ethernet bus simplifies communication. 

Additionally, ethernet is capable of much faster transmission rates than UART (10-40,000 

Mbits/sec vs 300-230400 bits/sec). Therefore, the decision to use ethernet was driven by 

expectations of the client’s needs later in the project (when they are implementing sensors for 

autonomous driving). Due to difficulties in establishing ethernet communications, we opted to 

use UART for the proof of concept of our communication systems. Switching to ethernet should 

be a priority in progressing further with this project. 

Multi-Controller Input: It is common for autonomous vehicle researchers to test multiple 

algorithms at a time, toggling between these algorithms mid-operation. The current DBW system 

doesn’t support this capability, both through software and the mode select panel. Adding the 

software implementation is fairly trivial, this just requires serial pins for each controller. One 

potential design for a next iteration of the mode select panel would add several more buttons, and 

have them connected via software. These buttons could then be used for whatever an 

implementer desires, whether it be switching to a different autonomous controller, or engaging a 

peripheral. 
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Graphical User Interface: The current system-on-a-bench relies on a joystick connected to the 

system via an arduino as the sole source of command inputs. While a basic graphical user 

interface (GUI) had been identified as a developer-friendly means of testing user commands to 

the system, as well as reading in feedback from the system, it had been deprioritized when the 

team decided to shift from ethernet to UART communication protocol. Finishing the 

implementation of a GUI for testing has the potential to save future developers a significant 

amount of time when it comes to debugging communication-related issues. 

 

 

Lessons Learned 

Issues our team ran into 

■ SPC board exploded due to bad parenting (not our fault) 

■ SPC board jr exploded due to ethernet voltage level difference (our fault) 

■ SPC debugger exploded due to interference by God 

What can be improved 

■ Better noise resistance 

■ Improved layout separating HV and LV systems 

Personal opinions/recommendations for future teams 
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XIII. Appendices 

A. Block Diagrams 

B. Parts Selection 

a. Datasheets 

C. Budget 

Below is a proposed budget for the Drive-by-Wire Project, including vehicle implementation:

 

The actual project budget for this project was tracked an an expense tracking document managed by 

HSL, the link to which is attached below, it also includes information on issued reimbursements. 

https://docs.google.com/spreadsheets/d/12uSbW8P5HtIJn0ZiAjUDST9MpDI8SHByi_CQQ3cgVDg/edit?usp=sharing  

 

D. Mechanical Drawings and CAD Files 

All mechanical drawings and CAD files are included in the CAD section of the project 

GIT repository (see Appendix J for details and access). 

https://git.ucsc.edu/drive-by-wire/cad.git  

E. System Wiring Diagram 

  

 

https://docs.google.com/spreadsheets/d/12uSbW8P5HtIJn0ZiAjUDST9MpDI8SHByi_CQQ3cgVDg/edit?usp=sharing
https://git.ucsc.edu/drive-by-wire/cad.git
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F. Power Budget 
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G. Power and Signal Harnesses  

a. Harness Diagram 

  

b. PinOut Table 
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H. List of Error Code Meanings  

I. Online Documentation 

J. Gitlab Repo 

 This project’s codebase is located in Gitlab. This is a group that contains several projects, 

spanning both the embedded side and the higher control side. The CAD project contains STL 

files for the various components that were developed. Onboarding for SPC5 Studio contains 

sample SPC5 projects that configure and implement various lower level drivers. Higher 

Controller Interface is where we intended to place sample scripts for the HSL to autonomously 

control the DBW system, however we failed to address this due to time constraints. System on a 

Bench v 1-3 contains the code run on the SPC58. As a result of our SPC58 braking, and having 

to switch to the Raspberry Pi, the most current codebase is actually found in the System on a 

Bench vπ project. As mentioned in our Letter to Future Teams, teams should begin by converting 

the System on a Bench vπ codebase back to the SPC58. 

 

https://git.ucsc.edu/drive-by-wire
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 System on a Bench vπ consists of a number of header files, as we believed abstraction 

was the key to maintaining a clean codebase. Drive_by_Wire.c contains the state machine 

implementation, and every other file exists to support this. Main.h contains definitions for enums 

used for the state machine and current input mode (gamepad, manual control, autonomous). 

CarValues.c/h contain definitions for the struct we use to keep track of the current car data, and 

certain functions to interface with these structs. Setup.c/h contains the functions which run the 

system setup tests. Operation.c/h contains the function which updates the subsystems during 

DBW operation. CircularBuffer.c/h, packet_builder.c/h, and Serial.c/h are all used in the I/O 

between central controller, joystick controller, and autonomous controller. Leds.h contains files 

to control the mode select panel leds.  

K. SPC5 Studio Guide 

L. SPC58 Driver Configuration Guide 

M. PCB Specifications 

 The Accelerator Contention Circuit (ACC) is the only custom PCB implemented on the 

system on a bench. This section includes each layer of the board for visualization purposes only. 

The actual files necessary for production of the board are included in the shared Google Drive 

folder under [Electrical Systems→Accelerator Contention→Version 3 → GERBERv3.1.zip]. 
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 It should be noted that these drawings are not to scale, and are included for reference 

only. In the top layer image (white, right side) C4 is an unused additional filtering capacitor for 

the power line to the MCP4812 DAC. If noise issues are encountered on the power supply line to 

the ACC, this capacitor should be added based on the needs of the specific application.  

 

Necessary Components for the ACC 

Part Name Reference 
Designator 

Quantity DigiKey Part Number 

5V Relay 450mW Q1, Q2 2 2449-J0971CS5VDC.45 

10k 1% Resistor R1, 2, 5, 6, 8 5 10.0KXBK 

1k 1% Resistor R3, 4 2 BC3916CT 

10pF Capacitor C1, 2, 3 3 445-173471-1 

Unimplemented filter C4 1 N/A 
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DAC U1 1 MCP4812 10 bit DAC 

Single Supply Op Amp U2,3 2 TCP081API 

6 Terminal Screw Connector J1 1 WM13968 

4 Pin Vertical Header J2 1 CONN HEADER VERT 4POS 
2.54MM 

Diode D1,2 2 1N4148FSCT 

N-channel FET Q3 1 TN2106N3-G 
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